Building your own Sun-In-A-Box

Sun-In-A-BoxTeam[2].jpg

Building your own Sun-In-A-Box

After electrical engineering students Nathan Olson and David Roszko completed a research project involving medical electronics at the University of Alberta last year, they decided to try their hand at solar technology. They figured it would just be another project that began and ended in the classroom. But Roszko’s wife Ashley, a graduate student in Community Engagement at the University of Alberta, had a bigger idea.

“I was like, [this project] is so cool; we could use it to teach people about renewable energy and how solar power works,” says Ashley Roszko.

In turn, the trio began a year-long interdisciplinary project teaching people how to build personal solar units, which they called a Sun-In-A-Box, with the broader goal of driving grassroots engagement with solar technologies.


“There were kids working with seniors … someone holding a screwdriver while someone else screwed in a panel. It was just so neat.”


Practically speaking, a Sun-In-A-Box is a beefed-up solar-powered charger. The wooden frame, about the size of a shoebox, contains a battery pack, a pivoting solar panel and a small computer that can be programmed for various tasks. The box’s 12-volt rechargeable battery can charge or power anything that plugs into a USB port.

“It was designed to support itself for two days without any sun,” said Olson, one of the two electrical engineering students who designed the box.

That means it can charge about five phones before it needs a new dose of sunlight. In addition, with a few modifications, the wooden box can be rugged and weather proof, and can be used camping, or left outside for longer stretches to harness the sun’s energy for daily use.

Sun-In-A-Box[2].jpg

Sounds cool, and maybe you want one of your own, right? But you can’t buy a Sun-In-A-Box. You have to build it. That’s the point.

The venture was created as an education project – a way to get kids and community members excited about solar energy, and to scale the power of the sun down to something people can understand and use themselves.

Once the two engineers had developed and finalized the unit specs – the parts cost about $350 and can be found at Canadian Tire, Home Depot, any electronics shop, or just lying around your house – Ashley kicked her community engagement skills into action. The trio gave presentations to elementary schools and community groups in the Edmonton area, showing participants how the Sun-In-A-Box works. In July, thanks to the support of EcoCity Edmonton, they put on a workshop through the Alberta Green Economy Network with the Edmonton Federation of Community Leagues, Relay Education and the Riverdale Community to teach people how to build a Sun-In-A-Box.

Ashley Roszko said the workshop participants’ diversity and cooperation was inspiring.

“There were kids working with seniors … someone holding a screwdriver while someone else screwed in a panel,” she said. “It was just so neat.”

Sun-In-A-Box[3].jpg

From an engineering perspective, Olson said it was interesting to work with an interdisciplinary team, sharing solar technology with people who aren’t technical, and helping them make it a reality.

“It’s easy to get siloed and you don’t see what’s on the other side of the fence,” he said. “As engineers, we didn’t really consider the community engagement aspect.”

Being able to share their knowledge and passion with others who haven’t thought much about renewable energy was an exciting opportunity, Ashley Roszko said, especially when it came to hearing people’s ideas for what to do with a Sun-In-A-Box. Beyond charging phones, people suggested hooking up a wildlife camera, or powering a pump to use the water from a rain barrel or plugging in a soil sensor.

“[It was cool to see] what sustainability looks like to them when they realized that they could actually build their own,” she said.

Equally important, she added, is that there isn’t just one way to make a Sun-In-A-Box.

“We’re trying to show people something you can do, but you don’t have to do it exactly as we did,” she said, pointing out there are plenty of improvements people can make. Indeed, the project is open-source, and they are continuing to update documents and directions online, so that people can make their own suggestions and customizations.

“That’s one of the areas we hope it will continue to grow,” she said.


Detailed instructions on how to build your own Sun-In-A-Box can be found here.

For more information on how to undertake your own education project, check out the resources page.

Submit your new energy story here.