Buildings

World’s first 'passive house' car dealership coming to Red Deer

ScottSubaru-PassiveHouse-4.jpg

World’s first 'passive house' car dealership coming to Red Deer

Garrett Scott doesn’t believe in wasting energy.

So, when an opportunity came for the owner of Scott Subaru to build the world’s first passive-house compliant car dealership in Red Deer, he jumped at the chance.  

“I don’t believe in consuming energy just to consume it,” said Scott. “We’re building something more robust and really unique that’s never been done before.”

I don’t believe in consuming energy just to consume it.”
— Garrett Scott, Owner, Scott Subaru

Passive House is an international energy-based standard that aims to reduce a building’s ecological footprint by adhering to strict energy-efficient design elements and construction requirements.

Scott knew that building a passive dealership would be a long and expensive undertaking, but he’s confident the up-front costs will pay off down the line. Not only will the stronger building construction last longer than a traditional dealership, but the energy-efficient features are expected to eliminate 80 per cent of the building’s heating and cooling costs. 

Passive house elements

Prior to beginning construction in 2017, Scott and the building team spent two years studying aspects of traditional dealerships to learn how to incorporate design and construction elements that would adhere to the Passive House standards.

“Because we are a franchise car dealership, there were certain image requirement from the manufacturer we had to adhere to,” said Scott, who pointed out this was a huge factor during the construction process.

“There were obviously some challenges during construction,” said Scott. “There were people we hired who’ve build passive houses before, but never car dealerships with specific design requirements.”

The exterior walls are one of the most important features of the 14,000 square-feet passive dealership. Three-feet thick, they’re built with three layers of insulation, which create an impenetrable seal around the building to help control the temperature inside and minimize air loss.

The floor-to ceiling windows – a design element synonymous with car dealerships – are triple-paned, energy-efficient glass equipped with automated blinds that control the amount of sunlight entering the building.

Further, a moss bed underneath the porous concrete parking lot will collect and control the water and help eliminate mold and mildew.

ScottSubaru-PassiveHouse-Shop2.jpg

Inside the building, energy-efficient air circulation systems eliminate the need for central air, furnaces or air conditioning units.

“Because we’ve built the building so robustly with a thick exterior shell, heating isn’t really a challenge,” said Scott.

A heat recovery ventilation system pulls wasted heat from appliances, lighting and body heat to help circulate the air inside the building and regulate the temperature. The exterior seal around the building also helps regulate the indoor temperature since it greatly reduces the amount of air escaping the building, which means it’s easier to keep a constant temperature, even during the hot summers and old winters.

However, Scott said one of their biggest challenges was figuring out how account for the large service doors that open and close many times throughout the day.

During the two-year planning stage of the project, they ran simulations for an entire year to determine how many times a day the bay doors opened or closed, and how many people entered and left the building.

“There was a lot of planning with building something that is a first,” said Scott. “We learned a lot about how much we could save if we took the time to get it right.”

As well as building a space that is more environmentally sustainable and energy-efficient, Scott said he’s also looking forward to the extra-benefits of a passive house construction.

The air is fresher and cleaner, which will improve employee productivity and decrease the likelihood of headaches and air-borne illnesses, like the common cold.

Scott also said the extra-thick exterior walls not only keep it quiet on the inside, but they will also eliminate noise-pollution escaping from the car shops.

“I live my life off a waste-not-want-not kind of philosophy,” said Scott, who hopes this project will set the standard for future dealership builds.

“If we don’t have to consume all of the energy we do now, why should we?”

Calgary passive house has no furnace, good to -30

46260957441_5c614fb56e_z.jpg

Calgary passive house has no furnace, good to -30

When you step into the Brookfield Symons Gate Passive House in Calgary, Alta., the front door closes with a sound that makes you feel like you have just entered an airtight vault. And then you are greeted by the sounds of silence.

The sounds of the outside world vanish within the heavily insulated walls of this gorgeous, 2,400 square home. You don’t even hear the hum of a fan, because there’s no furnace.

The walls are solid cross-laminated wood, the basement floor feels like it’s heated, and the windows are triple-glazed energy-efficient Austrian models that tilt and swing open.

This is the Tesla of passive homes

“Passive house takes advantage of one of the most abundant resources that Alberta has, which is the sun,” says Doug Owens, senior director of strategic development and regulatory affairs with Brookfield Residential, North America’s sixth largest developer.

This ultra-efficient house uses 90 per cent less energy than a conventional home. An eight-kilowatt solar system on the roof provides nearly all of the energy required to power and heat the home. It has no gas connection.

“And the giant window in the middle is actually the furnace for the house,” says Owens, pointing to the massive, south-facing window that lets the passive solar heat stream in. The window’s R7-rated triple glazing helps trap the warmth inside.

“Air tightness is critical,” says Owens, but even though this home is rated as super airtight–just 0.5 air exchanges per hour–it gets plenty of fresh, clean, filtered air.

Instead of a furnace, the home has a heat recovery ventilator—a fancy name for an air exchange system that recovers 86 per cent of the heat from the outgoing air. Built into the ventilation system is a 3,000-watt electric heater—but it only kicks in on the coldest, darkest days of winter.

This Zender ventilator is actually called an energy recovery ventilator because it also has an active bypass system that stops scavenging warm air on hot summer days, helping cool the home.

When you head downstairs, most people ask if the floor is heated—it has eight inches of insulation beneath it and it feels quite warm. The mechanical room is nearly empty, with just the air exchange system and a super energy efficient electric water heater.

Sixteen-inch walls – No furnace!

This minimalistic system is made possible thanks to out-of-this-world levels of insulation in the home.

“It’s incredibly well insulated,” explains Owens. “The windows are R7 and typical windows are about R2; the wall systems are R45 compared to an effective R18 that is required, and the roof system is R55 compared to a cathedral ceiling which we’re required to have R10.”

Add the thickly insulated basement floor, and you have an unbroken envelope of insulation blanketing the home.

Brookfield viewed the Symons Passive House as a chance to innovate. You could use thick double-stud walls for the insulation, but Dean Guidolin (design manager at Brookfield) says they opted to use solid cross-laminated timber (CLT). The custom walls were built in a special panelization factory in Germany.

Matt Arsenault of Sawback Builders shows the super-insulated 16-inch wall system. Photo David Dodge, GreenEnergyFutures.ca

Solid wood walls

Brookfield designer Dean Guidolin says CLT is environmentally friendly. Behind him is the large window that is a key part of the passive house design. Photo David Dodge, GreenEnergyFutures.ca

CLT is a great, sustainable resource, says Guidolin. “The wood fiberboard on the outside is a byproduct of the manufacturing process for the CLT. Ultimately you get another good environmental story out of that.”

Matt Arsenault, president of Sawbuck Builders (the company that assembled this unique home) describes the CLT system in detail. “It is four inches thick timber that’s been glued and laminated together and it creates the structure of the wall,” says Arsenault. Then add 9.5 inches of solid wood fiber insulation and another 1.5-inch layer of wood-based insulation and you have 16-inch thick walls that lose almost no heat.

Arsenault says the pre-built walls, floors, and ceilings came in a sea container along with some IKEA-like instructions in German to put it all together.

“I learned a lot about how the energy loss happens in a typical house, through air leakage and things like that. And this method of construction really eliminates a lot of the opportunity for outside cold air to come in and cool down the house,” says Arsenault.

Beautiful research – into an energy efficient future

Master bedroom in the Symonds Passive House. Photo David Dodge, GreenEnergyFutures.ca

Owens says Brookfield didn’t aim for an inexpensive passive home, but rather chose to explore new systems and build a truly great home. “I was just thrilled to see people walk in, and when they open it open the door their jaw drops at how beautiful the home is,” says Owens.

Before tackling the project, Owens himself took a course in passive house building. He believes code changes are coming, and homes may have to be net-zero-ready as early as 2030. He wants to keep Brookfield ahead of the trend.

“It doesn’t matter whether it’s Alberta, Canada or North America,” says Owens. “Globally, there’s a conversation around energy efficiency, resiliency, and conservation. There’s a tremendous amount of momentum behind it.”

Push for quality and performance

The components of this solid CLT home were built in a panelization factory. Photo Brookfield Residential

Owens says public attitudes are also pushing the shift. “I think people are starting to think about the environment more.” Where yesterday’s customers may have been fixated on granite counters and hardwood floors, many home buyers today have questions about energy efficiency.

Brookfield’s first passive home was not cheap to build, but Owens says they learned a lot. He believes the move toward prefabrication will help ease labour shortages, increase quality, and meet higher efficiency standards.

“I think that’s really going to drive down prices and then they will become commonplace,” says Owens.

If you think this home would be a sight to see, we have good news: you can see it. “It’s going to open through 2019 for booked tours,” says Owens. “We’re going to try to have it open the first Friday of every month. We want to get as many professionals, industry partners, and government folks through.”

Brookfield clearly aims to be an active force in passive technology.

Kitchen-and-Living-room-in-Brookfield-Passive-House.jpg

This story was originally published on Green Energy Futures.

Learn more about Brookfield’s passive house, here.

For more information on energy efficiency in Alberta, see our resources page.

Submit your own new energy story here.

Nurturing Students on the Innovation Front

InnovateHighschool2.jpg

Nurturing Students on the Innovation Front

The Innovate Program is a way for high school students to learn outside of a traditional classroom setting and do hands-on projects based on real world problems. The students are able to take on a project of their choice and are supported by educational staff, connected to resources and provided education credits for their work. Most projects emphasize sustainable development, emerging technology, reimagining citizenship for a rapidly changing world and entrepreneurship.

Aaron Dublenko, teacher at Queen Elizabeth High School in Edmonton and mastermind behind the project says, “this program assists students in developing mindsets that empower them to confidently design and implement solution oriented projects.” It also creates an opportunity for them to develop skills through hands-on trial and error and collaboration with peers and experts.

Innovate provides an opportunity for students to explore their interests, creates an encouraging space to make mistakes and troubleshoot designs as well as be creative in what they produce. Here are some of the projects students created.

Green Career Fairs

Students and staff organized five “Green Career Fairs” in Edmonton Public High Schools. Each school hosted 30-40 vendors per fair, with a total of more than 6,000 youth learning about environmentally focused career options. Students in the Green Career Fairs program created questionnaires, informative maps, and fundraised through grants for shirts, snacks and door prizes for the events.

Buildings that Teach

Through this program students explore, learn and change the way energy and resources are used in their school. In the past, students installed Smart Meters in a local arena to analyze electricity consumption. Another group researched their school’s solar passivity potential, natural light, and air quality. Others have completed energy audits, thermal analysis and used DENT meters to record light use over time in their schools. They use their research to inform necessary groups and work to cause infrastructural and behavioral changes in order to reduce the carbon footprints and costs of building operations in their schools and other large buildings.

The Mosaic of Youth Voices on Climate Change

Innovate Students are creating a series of podcasts titled “The Mosaic of Youth Voices on Climate Change.” In these podcasts, students write questions and interview their peers to create discussions about climate change and their future in Alberta. In collaboration with Edmonton’s historian laureate, the students are working to strengthen and illuminate the youth voice on climate change, as well as generate discussion about these topics among their peers.


For more information on how to undertake your own education project, check out the resources page.

Submit your new energy story here.


Welcome to the Mosaic Centre

23771470166_4de1ebbd2b_o.jpg

Welcome to the Mosaic Centre: Alberta’s first net-zero commercial building

The gap from net-zero houses to large-scale net-zero commercial buildings has been bridged. The Mosaic Centre for Conscious Community and Commerce in Edmonton is the first commercial net-zero office building in Alberta. In a net-zero building  the amount of energy used is equal to the amount of renewable energy generated on-site on an annual basis, allowing the Mosaic Centre to use 65% less energy than a conventional commercial building. What was once just a dream of co-owners Dennis Cuku and Christy Benoit has become reality.

“We said it was going to be beautiful. Check. Sustainable. Check. And affordable. Check,” says Benoit.

This 30,000-square-foot building cost $10.5 million dollars. It’s bright and roomy with beautiful exposed wood beams, feature stairs and a three-storey living wall in the foyer. It has large south facing windows, thermally massive concrete floors and as low an electricity demand as they could get away with.

They reduced that demand by getting rid of as many overhead light fixtures as they could. Instead, the workers get copious amounts of natural light and use task lighting when necessary.

There is much more energy demand per square metre in a bigger, commercial building than a net-zero home. The owners put together a team led by Vedran Skopac of Manasc Isaac Architects that used lean processes and integrated project delivery to build this first-of-its-kind building.

Typically, tradespeople just show up, do their job and leave it to the next crew to finish their part. With the Mosaic Centre crews collaborate to help eliminate the wasted time and materials that happens on a typical build. As a result, there were no change orders during the project, which is almost unheard of in a modern construction project.


“Sustainable and beautiful can co-exist. When you put affordability in there that’s where the real challenge occurs. But this is, I think, a living example of how the three can co-exist”


Mosaic’s heating and cooling system is a fully electric ground source heat pump system. The parking lot on the north side of the building is a geothermal field with 32, 70-metre deep boreholes.

With all of the south-facing glass and concrete floors, the building actually has a much larger cooling demand than a typical Edmonton office building. If the sun is shining brightly the building even has to run its cooling system in February.

Unusually for a commercial building, the windows can be opened. These help regulate the temperature in the summer and gives workers a measure of control over their environment.

The building achieved LEED platinum certification, the highest possible level of recognition for environmental stewardship on a construction project.

“Sustainable and beautiful can co-exist. When you put affordability in there that’s where the real challenge occurs. But this is, I think, a living example of how the three can co-exist,” says Benoit. Due to high savings on energy costs, the net return on investment, over 5 years, is the same as that of a conventional building. 

They want to inspire other builders to follow in their footsteps and to make commercial buildings closer to net-zero. To that end the engineering and research reports on the building are publicly available. If you are a builder and you want to make sure your next commercial building is closer to net-zero, the recipe is out there.


Read the full story on Green Energy Futures here

For more information on how to undertake your own energy efficiency project, check out the resources page.

Submit your new energy story here.


All Aboard the Earthship

15155442587_e81506cda1_o.jpg

All aboard the Earthship: a sustainable off-grid home on the prairie

An Earthship is a long skinny bungalow with an earth berm enveloping the back and sides and a greenhouse on the front. The back and side retaining walls are made of tires sledgehammered full of dirt. Non-load bearing interior walls are made of aluminum cans sandwiched into a honeycomb of concrete.

Here’s the story of how a family built an Earthship in southern Alberta. After first reading about them in The Geography of Hope by Chris Turner, Duncan Kinney passed the book along to his dad Glen. He was intrigued so they volunteered on a build near Wheatland, Wyoming. Glen even volunteered on another build in Hundred Mile House in central B.C. the next year.


"It was invaluable seeing one built first-hand and meeting other volunteers and the crew"


A couple years later after everything was in place Duncan’s parents went down to Taos, New Mexico to check out finished Earthships first-hand. Suitably convinced they came back with plans for a three-bedroom, two-bathroom Global Model with a couple of modifications.

Michael Reynolds is the father of the Earthship movement. An architect by training and rabble-rouser by nature he was dissatisfied with standard home design and started building sustainable houses on the mesa using garbage. He used bottles, cans and tires alongside natural and conventional building materials. For the past 20 years Reynolds has been perfecting the design.

The design revolves around six core concepts: on-site electricity production and wastewater treatment, using rainwater into drinking water, passive heating and cooling, food production and using readily available materials. It has four walls, a roof, flush toilets and satellite TV just like any other North American home.

It generates electricity on-site with solar panels and batteries. Drinking water is caught by the metal roof and collected in four cisterns capable of storing 5,800 gallons of water. That water is treated and filtered to make it ready to drink. Greywater from the showers and bathroom sinks is used to water the greenhouse. That greywater is pumped back into the house and used to flush the toilets. Simple earth tubes and ceiling vents keep the house cool in the summer. Passive solar design, thermal mass, lots of insulation and sunlight keep the house warm in the winter.

The Kinneys hired the Earthship crew and Michael Reynolds to build the house in Lethbridge. With them came another 30-35 volunteers who camped on-site. Eight hundred tires were pounded and stacked by the end of the fourth day.

About 12,000 cans were used for interior walls, for the bond beam that sits on top of the tires and to help fill in and pack out the tires to get them to a level surface.

What began as a radical alternative in the New Mexico desert 30 years ago has evolved into an inspiring and surprisingly simple home. And the lessons learned from Earthships can be seen today in increasingly popular net-zero homes.


Read the full story on Green Energy Futures here

For more information on how to undertake your own energy efficiency project, check out the resources page.

Submit your new energy story here.


Life is Better at EchoHaven

7. ECHOHAVEN.jpg

Life is Better at EchoHaven

What if we could build suburbs that preserved the natural landscape, featured super energy efficient homes, built a sense of community — and had no vinyl siding? The neighborhood of Echohaven in northwest Calgary is doing it.

A typical suburban development scrapes the site bare and parcels it into lots. At the end, a park might be created or a pond or natural space rebuilt. Echohaven, on the other hand, preserved 60 per cent of its natural spaces from the beginning.

The development preserved its unique knob-and-kettle foothill topography with ponds, creeks, forests and wildlife by parceling off 24 small lots with big natural spaces owned by the neighbourhood condo association.

Instead of a big backyard, kids get to play in a neighbourhood creek or a forest. And the landscape has a purpose.

“Typically, there’d be storm sewers that carry all the runoff from the site down to the Bow River through a series of pipes. We’re reducing the amount of infrastructure by retaining all the storm water management on-site. They feed the ponds, the storm water contributes to the ongoing viability and health of the ecosystem here,” says Dave Spencer, one of the founders of the Echohaven project.

The homes also collect rainwater for use in toilets and the yard, which reduces demand on the city and saves homeowners money.

Every home must meet a minimum Energuide 84 rating. That’s an extremely energy efficient home.

There are no gas lines. Up to 60 per cent of the heat it needs comes from sunshine streaming in through high quality south-facing windows. Spencer recommends an insulation minimum of R40 walls, R60 for the roof and R30 under the slab. His net-zero house has R60 walls and an R100 roof.

Former oil and gas guy turned investment advisor and Financial Post columnist, Martin Pelletier moved into Echohaven in May of 2014 and he loves it.

“What made it really attractive to us was the community feel to it, the healthy aspect to it, and the environmental side, the stewardship. We own the land together through a condo association, so what you see here will never change,” says Pelletier.

And Echohaven is doing more to build community. They’re planning to build a community greenhouse where everyone who lives in the neighborhood will get their own growing space.

This has been a 20-year labour of love for Spencer. And while the project was a lot of work (and, thanks to civic and provincial rules and regulations, a lot harder than it should be), it is nearing its end — and for Spencer it was definitely worth it.

“I think it’ll be easier in the future to do it. We’re just kind of a little laboratory, how to do things a little different in the suburbs, creating a more sustainable city environment. I think it’s worthwhile,” he says.


Read the full story on Green Energy Futures here

For more information on how to undertake your own energy efficiency project, check out the resources page.

Submit your new energy story here.