Red deer

World’s first 'passive house' car dealership coming to Red Deer

ScottSubaru-PassiveHouse-4.jpg

World’s first 'passive house' car dealership coming to Red Deer

Garrett Scott doesn’t believe in wasting energy.

So, when an opportunity came for the owner of Scott Subaru to build the world’s first passive-house compliant car dealership in Red Deer, he jumped at the chance.  

“I don’t believe in consuming energy just to consume it,” said Scott. “We’re building something more robust and really unique that’s never been done before.”

I don’t believe in consuming energy just to consume it.”
— Garrett Scott, Owner, Scott Subaru

Passive House is an international energy-based standard that aims to reduce a building’s ecological footprint by adhering to strict energy-efficient design elements and construction requirements.

Scott knew that building a passive dealership would be a long and expensive undertaking, but he’s confident the up-front costs will pay off down the line. Not only will the stronger building construction last longer than a traditional dealership, but the energy-efficient features are expected to eliminate 80 per cent of the building’s heating and cooling costs. 

Passive house elements

Prior to beginning construction in 2017, Scott and the building team spent two years studying aspects of traditional dealerships to learn how to incorporate design and construction elements that would adhere to the Passive House standards.

“Because we are a franchise car dealership, there were certain image requirement from the manufacturer we had to adhere to,” said Scott, who pointed out this was a huge factor during the construction process.

“There were obviously some challenges during construction,” said Scott. “There were people we hired who’ve build passive houses before, but never car dealerships with specific design requirements.”

The exterior walls are one of the most important features of the 14,000 square-feet passive dealership. Three-feet thick, they’re built with three layers of insulation, which create an impenetrable seal around the building to help control the temperature inside and minimize air loss.

The floor-to ceiling windows – a design element synonymous with car dealerships – are triple-paned, energy-efficient glass equipped with automated blinds that control the amount of sunlight entering the building.

Further, a moss bed underneath the porous concrete parking lot will collect and control the water and help eliminate mold and mildew.

ScottSubaru-PassiveHouse-Shop2.jpg

Inside the building, energy-efficient air circulation systems eliminate the need for central air, furnaces or air conditioning units.

“Because we’ve built the building so robustly with a thick exterior shell, heating isn’t really a challenge,” said Scott.

A heat recovery ventilation system pulls wasted heat from appliances, lighting and body heat to help circulate the air inside the building and regulate the temperature. The exterior seal around the building also helps regulate the indoor temperature since it greatly reduces the amount of air escaping the building, which means it’s easier to keep a constant temperature, even during the hot summers and old winters.

However, Scott said one of their biggest challenges was figuring out how account for the large service doors that open and close many times throughout the day.

During the two-year planning stage of the project, they ran simulations for an entire year to determine how many times a day the bay doors opened or closed, and how many people entered and left the building.

“There was a lot of planning with building something that is a first,” said Scott. “We learned a lot about how much we could save if we took the time to get it right.”

As well as building a space that is more environmentally sustainable and energy-efficient, Scott said he’s also looking forward to the extra-benefits of a passive house construction.

The air is fresher and cleaner, which will improve employee productivity and decrease the likelihood of headaches and air-borne illnesses, like the common cold.

Scott also said the extra-thick exterior walls not only keep it quiet on the inside, but they will also eliminate noise-pollution escaping from the car shops.

“I live my life off a waste-not-want-not kind of philosophy,” said Scott, who hopes this project will set the standard for future dealership builds.

“If we don’t have to consume all of the energy we do now, why should we?”

Red Deer College leading the way in alternative energy learning opportunities

Red Deer College has installed 4,195 solar panels across the main campus, making it the largest institutional solar array in Canada. (Red Deer College)

Red Deer College has installed 4,195 solar panels across the main campus, making it the largest institutional solar array in Canada. (Red Deer College)

Red Deer College leading the way in alternative energy learning opportunities

Model it. Showcase it. Train in it.

This is the philosophy behind Red Deer College’s Alternative Energy Lab, the college’s latest investment in the alternative energy space.

“Students are very much interested and invested in climate change and clean energy systems,” said Joel Ward, president and CEO of RDC. “They want post-secondary institutions that will be able to support and model clean energy and clean energy technologies.”

The Alternative Energy Lab is a 5,274 square foot virtual and physical space where students can learn about alternative energy systems by experimenting with and researching different technologies, and conducting simulations of working energy systems. Approximately 1,000 students from programs like engineering and instrumentation technology, carpentry and electrician will benefit from the new lab space each year.

“It is a teaching and learning space where students have hands-on learning experience to build familiarity and confidence with alternative energy systems that they will likely to encounter in their careers,” said Ward.

In 2017, Red Deer College received – and later matched – a $5 million grant from the federal government’s Post-Secondary Strategic Investment Fund, which allowed them to begin construction on the building.

The lab has been designed to simulate systems associated with alternative energy production – such as small-scale solar or combined heat and power units – giving students a chance to install, operate and maintain various systems in a real-world setting.

For example, solar panels installed on the roof of the lab allow students to collect data, compare panel technologies and determine the most efficient, clean energy solutions for communities.

“Students are very much interested and invested in climate change and clean energy systems. They want post-secondary institutions that will be able to support and model clean energy and clean energy technologies.”
— Joel Ward, president and CEO of RDC

According to Ward, the research gathered in the lab will have far-reaching benefits. It will function as an impartial resource for alternative energy information in central Alberta and increase awareness around some of the latest technologies, while using findings to educate and support communities and businesses interested in investing in alternative energy solutions.

“Many of the businesses are looking for alternative energy [technologies] in their own industry, but they aren’t quite sure what it is and what the return on their investment will be,” said Ward, who added they are currently doing a study on the angles of solar panels to optimize for the sun in central Alberta.

Ward said the college has also designed the lab as a flexible space, because technology in the alternative energy space is constantly evolving. Much of the equipment in the lab is on wheels, which gives them the ability to adapt to new systems as they emerge, and ensures any teaching and learning within the lab stays current.

Further, RDC partners with experts in the field to facilitate public forums, as well as education for businesses and members of the community around some of the more sustainable energy options available.

These forums will help answer common questions, such as what happens when snow accumulates on solar panels and the return-on-investment if businesses decide to move away from fossil fuels and into clean energy.

Instructor and student in RDC's Alternative Energy Lab. (Red Deer College)

Instructor and student in RDC's Alternative Energy Lab. (Red Deer College)

Red Deer College’s Alternative Energy Initiative

The Alternative Energy Lab is just one component of Red Deer College’s greater Alternative Energy Initiative, which supports a five-year goal to become a net-zero campus powered by sustainable resources.

“We want to be the go-to organization in central Alberta and beyond, not just for demonstrating these new technologies, but incorporating it into our own plan to be net-zero in the next five years,” said Ward.

To reach that goal, the college is tapping into three key technologies.

First, RDC has installed a natural-gas powered combined heat and power unit that produces hot water to generate electricity. The extra heat produced is then tied into the existing hot water distribution system to heat various locations on campus.

Second, the college has installed 4,195 solar panels across the main campus, making it the largest institutional solar array in Canada, according to Ward.

Third, RDC has replaced its low efficiency lighting with high efficiency LED lighting, reducing its electricity consumption.

We want to be the go-to organization in central Alberta and beyond,
not just for demonstrating these new technologies,
but incorporating it into our own plan to be net-zero in the next five years.
— Joel Ward, Red Deer College president and CEO

Through these programs, according to Ward, the college is already offsetting almost 2/3 of its electricity demands, creating its own 9,200-megawatt hours per year in electricity savings, and decreasing its heat and power costs by almost $1 million.

Because RDC often produces more energy than it can use, the college is also looking to incorporate battery storage technology in order to store the energy until it’s needed.

Additionally, the college has begun working with Calgary-based Eco-Growth Environmental to enable them to convert organic waste into biomass fuel, which will assist in powering the campus’s gasification boiler systems.

“We believe it is a moral imperative to support the diversification initiative of our province and the world we are leaving our kids,” said Ward.

“This ongoing conservation strategy not only saves money, but it demonstrates that we are serious about alternative energy and supporting strategies to mitigate climate change.”

Submit your new energy story here.